/
/
Mecanismo bioquímico da produção de corpos cetônicos.
Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on email
Share on whatsapp

Mecanismo bioquímico da produção de corpos cetônicos.

Resumo: A denominação dos corpos cetônicos foi organizada por convenção, uma vez que, estritamente falando, o β-hidroxibutirato não possui uma função cetônica. Essas três moléculas são solúveis em água, o que facilita o transporte no sangue. Sua principal função é fornecer energia a certos tecidos, como o músculo esquelético e cardíaco.

As enzimas envolvidas na formação dos corpos cetônicos estão principalmente no fígado e nas células renais, o que explica por que esses dois locais são os principais produtores desses metabólitos. Sua síntese ocorre apenas e exclusivamente na matriz mitocondrial das células.

Uma vez sintetizadas, essas moléculas passam para a corrente sanguínea para os tecidos que as requerem, onde se degradam em acetil-CoA.

O corpo principal da cetona é o acetoacetato ou ácido acetoacético, que é sintetizado principalmente nas células do fígado. As outras moléculas que compõem os corpos cetônicos são derivadas do acetoacetato.

A redução do ácido acetoacético dá origem ao D-β-hidroxibutirato, o segundo corpo de cetona. A acetona é um composto que é difícil de degradar e é produzido por uma reação espontânea de descarboxilação do acetoacetato (portanto, não requer a intervenção de nenhuma enzima), quando está presente em altas concentrações sanguíneas.

Durante o processo de oxidação dos ácidos graxos no fígado dos seres humanos e da maioria dos outros mamíferos, o acetil-CoA (acetilcoenzima A) formado pode entrar no ciclo do ácido cítrico ou pode ser convertido nos denominados “corpos cetônicos”, ou seja, em acetoacetato, D-β-hidroxibutirato e acetona, que são exportados para outros tecidos através da circulação sanguínea.

A acetona, que é produzida em menor quantidade do que os outros compostos, é exalada. O acetoacetato e o D-β-hidroxibutirato são transportados pelo sangue até alcançarem os tecidos extra-hepáticos (por exemplo, músculos esqueléticos, cardíaco, córtex renal), onde ocorre a oxidação desses compostos por meio da via do ciclo do ácido cítrico para fornecer grande parte da energia requerida por esses mesmos tecidos. O cérebro, que normalmente usa apenas a glicose como combustível, em condições de necessidade (fome), quando a glicose não está disponível, pode adaptar-se para utilizar o acetoacetato ou o D-β-hidroxibutirato na obtenção de energia.

A disponibilidade de oxalacetato para iniciar a entrada do acetil-CoA no ciclo do ácido cítrico é o principal fator determinante da via metabólica que será tomada pelo acetil-CoA na mitocôndria do fígado. Em certas circunstâncias, como no jejum, as moléculas de oxalacetato são retiradas do ciclo do ácido cítrico e utilizadas na síntese de moléculas de glicose (gliconeogênese). Quando a concentração de oxalacetato está muito baixa, pouco acetil-CoA entra no ciclo de Krebs e, assim, a formação de corpos cetônicos é favorecida.

A produção do composto em questão pelo fígado e sua exportação para os tecidos extra-hepáticos, em geral, permitem a oxidação continuada dos ácidos graxos no fígado, mesmo quando não há a oxidação do acetil-CoA por meio do ciclo do ácido cítrico.

O primeiro evento para a formação do acetoacetato a nível hepático é a condensação enzimática de duas moléculas de acetil-CoA, cataliada pela enzima tiolase. Então, há a condensação do acetoacetil-CoA em acetil-CoA para originar o β-hidroxi-β-metilglutaril-CoA, o qual é quebrado para formar acetoato livre e acetil-CoA.

O acetoato livre é reduzido em D-β-hidroxibutirato, através de uma reação reversível catalisada pela enzima D-β-hidroxibutirato desidrogenase. O acetoato é facilmente descarboxilado; o grupo carboxila pode ser perdido espontaneamente ou pela ação da acetoacetato descarboxilase.

Nos tecidos extra-hepáticos o D-β-hidroxibutirato é oxidado até  acetoacetato pela D-β-hidroxibutirato desidrogenase. O acetoacetato é ativado para dar origem ao éster da coenzima A por transferência do CoA do succinil-CoA (intermediário do ciclo do ácido cítrico), em uma reação catalisada pela β-cetoacil-CoA transferase. O acetil-CoA é então clivado pela enzima tilose, liberando suas duas moléculas de acetil-CoA que, por sua vez, entram no ciclo do ácido cítrico.

A produção e a exportação dos corpos cetônicos pelo fígado permitem a oxidação continuada dos ácidos graxos, mesmo com uma mínima oxidação do acetil-CoA a nível hepático. Isso ocorre, por exemplo, quando os intermediários do ácido cítrico estão empregados para a síntese de glicose, através da gliconeogênese, a oxidação dos intermediários do ciclo do ácido cítrico diminui e o mesmo ocorre com a oxidação do acetil-CoA. Além disso, o fígado possui uma quantidade limitada de coenzima A e, quando a maior parte dela está ligada nas moléculas do acetil-CoA, a β-oxidação dos ácidos graxos é reduzida de velocidade devido à falta desta coenzima livre. A produção e a exportação dos corpos cetônicos liberam a coenzima A, permitindo que a oxidação dos ácidos graxos continue.

Casos como jejum prolongado, ou diabetes melito não-tratado, resultam em uma superprodução de corpos cetônicos, à qual se associam sérios problemas médicos. Durante o jejum, a gliconeogênese retira a maior parte dos intermediários do ciclo de Krebs, redirecionando o acetil-CoA para a produção de corpos cetônicos. No diabetes não-tratado, a insulina está presente em ínfimas quantidades, e os tecidos extra-hepáticos não conseguem captar a glicose da corrente sangüínea de forma eficiente. Para aumentar o nível de glicose no sangue, a gliconeogênese hepática é acelerada, o que também ocorre com a oxidação dos ácidos graxos no fígado e na musculatura, gerando uma produção de corpos cetônicos acima da capacidade de sua oxidação pelos tecidos extra-hepáticos.

O aumento nos níveis sangüíneos do acetoacetato e D-β-hidroxibutirato diminuem o pH sangüíneo, resultando em uma acidose, condição que pode provocar o coma, em casos extremos, e até evoluir para a morte. Os corpos cetônicos no sangue e na urina de indivíduos diabéticos não-tratados podem atingir níveis muito altos, condição denominada cetose.

enviado por Dra. Célia Wada – CRF-7043.

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *